
AD-A097 533 CLEMSON UNIV SC DEPT OF MATHEMATICAL SCIENCES F/S 12/1
MONTE CARLO STUDY OF AR (l) ESTIMATORS UNDER SEVERAL PERFORMA--ETC(U)

MAR Al H S HILL, R F LING NOOOIA-75-C-0451
UNCLASSIFIED HNIll



11113 2

MICROCOPY Rt.OIUTION T1SI CHART



Ct )
A MONTECARLO STUDY OF R(1

ESTIMATORS UNDER 'SEVERAL

PERFORMANCE CRITERIA*

*e 
by __--

i H.S.IHILL/ R. .IN

Department of Mathematical Sciences

KJ)Technical R~eport>/36O

I) Marda 2*8l

This work was supported in ,KaT by the Office of Naval Research

under Contra N0147-

SDISTRIBUTION STATEM4EN A
Approved fox public release;

Distribution unlimited I



ABSTRACT

The small sample performance of several AR(l) estima-

tors is investigated through the use of Monte Carlo compar-

ison studies. The performance of these estimators is com-

pared with respect to the criteria of bias, mean squared

error, mean absolute error, and mean squared prediction

error. Statistical performance groupings at various fixed

parameter values from (0,1) are determined based on pair-

wise multiple comparisons of estimator performance results.

Two types of two-step adaptive estimators are devel-

oped. One type relies on the use of only standard estima-

tors, while the other type includes ad hoc modifications to

standard estimators. The efficacy of performance of these

estimators is validated through the use of additional Monte

Carlo runs based on three different conditions of parameter

selection for data generation. The sensitivity of these

estimators to their use with larger sample sizes is also

investigated.

Based on the various simulation results, recommendations

regarding estimator selection for use in applied estimation

are given. The applicability of the adaptive estimators is

discussed and an example illustrating their application in

forecasting an economic series is given..
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CHAPTER I

INTRODUCTION

A considerable amount of the econometric literature

deals with studies involving economic time series. Since

the publication of Box and Jenkins' book [3) which discusses

forecasting with Autoregressive Integrated Moving Average

(ARIMA) processes, an increasing number of studies have

dealt with some aspect of ARIMA modeling and application.

The form of an ARIMA process is

t- = -t lp- 0t- qt-q (1.1)

where xt is a continuous random variable with

{xt: t = 0, ±1, ±2, ...}

being a discrete parameter time series, and

t = 0, ±1, ±2, ... }t

is a sequence of independent and identically distributed

2random variables (shocks) with mean zero and variance a

The i's are referred to as autoregressive parameters and

the 6i's as moving average parameters. In regards to ARIMA

modeling, Box and Jenkins have said:

The relating of a model of this kind to data is usually
best achieved by a three stage iterative procedure
based on identification, estimation, and diagnostic
checking.

By identification we mean the use of the data,
and of any information on how the series was
generated, to suggest a subclass of parsimonious
models worthy to be entertained.
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By estimation we mean efficient use of the data
to make inferences about parameters conditional
on the adequacy of the entertained model.
By diagnostic checking we mean checking the
fitted model in its relation to the data with
intent to reveal model inadequacies and so to
achieve model improvement. [3], p. 171.

This dissertation only considers the estimation stage

for one particular subclass of ARIMA models, the ARIMA

process in which p = 1 and q = 0, which is referred to as an

autoregressive process of order one, or simply AR(M). In

this case (1.1) reduces to

xt = Oxt_ 1 + E t .(1.2)

This dissertation deals primarily with problems surrounding

parameter estimation and forecasting of AR(l) series. These

problems are investigated through the use of Monte Carlo

simulation studies. In these Monte Carlo simulations,

series are generated by a process which is known to be sta-

tionary AR(l), i.e. with II<I. However, for the short

series generated in this study, there is no guarantee that

all of these series will appear stationary and exhibit clear

AR(M) characteristics. Still no model identification or

diagnostic checking are done on these simulated series, and

adequacy of the AR(l) model for fitting the !eries is

assumed. Possible influences of this assumption on the

interpretation of the results will be discussed in Chapter

VII.

Interest in the AR(l) model arises in the modeling of

many economic series. The yearly and quarterly earnings of

firms, real GNP, and consumer goods price index are among
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the series which have been modeled as AR(l) series. The

discussion of whether commodity futures prices and stock

prices have any "structure" has centered around the question

as to whether the series are random walks (AR~i) with 6 = 1).

However, the researcher who identifies AR(l) models for

short series is faced with problems in obtaining accurate

parameter estimates. it is well-known that the ordinary

least squares estimator is a biased estimator of a. For

short series, the bias can be substantial. Thus, many alter-

native estimators have been proposed in an effort to overcome

this bias problem. But it remains unclear as to which, if

any, of these estimators provide adequate performance in the

correction of bias, or whether such estimators are better in

performance in terms of mean-squared error. In addition, if

the objective is forecasting, other problems arise. Orcutt

and Winokur [30] have shown that even if corrections are

made for estimator bias, resultant predictive performance of

the fitted models may be no better or even worse than the

predictive performance of fitted models using the original

biased estimator. This indicates that we are dealing with a

situation where performance in terms of any individual cri-

terion such as bias, mean-squared error (ESE), or mean-

squared prediction error (MSPE) must be evaluated separately.

Just as reducing the bias of an estimator does not guarantee

a reduction in MSE, small bias and/or MSE does not of itself

guarantee good predictive performance in terms of MSPE.
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Previous investigation of these estimation problems

seems to be rather incomplete. Consider, for example, the

criterion of MSE. Several authors have done Monte Carlo

studies comparing different sets of estimators. Conflict-

ing results sometimes emerged because of the small number

of replications used. For instance, Copas [9] found, using

100 replications of sample sizes of 10 and 20, that for

B < .6, MSE of the maximum likelihood estimator was smaller

than for ordinary least squares. But Thornber [361 found,

for 100 replications of sample size 20, that MSE of ordin-

ary least squares was noticeably smaller than for the max-

imum likelihood estimator for a > .7. Moreover, different

parameters and sample sizes used in different studies make

it difficult to make comparisons across studies. The same

problem holds for the criteria of bias and MSPE.

Thus, we consider it appropriate to conduct a study

encompassing a set of estimators that are either well-known

or have been shown in the literature to be effective accord-

ing to one of the three criteria (bias, MSE, and MSPE) and

to conduct a sufficiently large scaled study to determine

the relative effectiveness of those estimators according to

each of the three criteria.

All of the previous Monte Carlo comparison studies

have considered estimator performance at particular fixed

values of 8. Since no one estimator is best for all para-

meter values, this information is of little practical value

in applied modeling where the value of B is certainly
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unknown. Thus, there is a need to seek better estimators,

estimators which exhibit better performance characteristics

throughout a range of values of S, without having to assume

any strong prior knowledge of the true value of 6.

The resultant objectives of this research are the

following:

(1) To investigate the small sample performance of
several estimators through the use of a large-
scaled Monte Carlo study;

(2) To make statistical comparisons of the results
of these sampling studies;

(3) To use any information gained in the estimator
comparison studies to aid in the development of
estimation strategies for use in application as
functions of the various estimation criteria.

In Chapter II, the estimators which are chosen for

evaluation in this study will be stated with a summary of

previous findings about some of them in the literature. The

criteria of bias, mean absolute error, MSE, and MSPE will be

defined. The empirical definitions of these quantities as

used in the Monte Carlo studies will also be given. In

Chapter III the design of the Monte Carlo simulations are

discussed, including a brief discussion of the choice of

sample size and selection of the number of replications.

The results of estimator performance comparisons at fixed

parameter values are given in Chapter IV. Estimator per-

formance with regard to each of the four criteria of

interest is discussed. Comparisons with the results ef

previous studies are made where possible. In Chapter V the

proposed strategy for applied estimation is given. The
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development of two types of adaptive estimators are out-

lined. Both types of adaptive estimators are based on a two-

step procedure; i.e., obtaining a preliminary estimate at the

first step, the value of which determines the choice of a

particular estimator for use at the second step in obtaining

a final estimate. The first type of adaptive estimators is

based on the use of only standard estimators in the second

step while the second type of adaptive estimators includes

the use of some "ad hoc" modifications to standard estimators

for use in the second step. Adaptive estimators of each

type are constructed for the criteria of mean absolute error,

MSE, and MSPE. The empirical determination of the adaptive

estimators will be discussed in this chapter. In Chapter VI,

the results of additional Monte Carlo runs which validate

the effectiveness of the adaptive estimators are reported.

Comparisons between the adaptive estimators and standard

estimators are made under three different conditions of data

generation. The first comparison is made for data sets gen-

erated with 8 drawn randomly from the interval (0.1). This

condition of generation most closely simulates conditions of

practical application where the true parameter is unknown,

and one has only a vague idea about its true location.

Additional estimator performance comparisons are made for

sets of data generated with 8 drawn randomly from each one-

tenth unit subinterval of the interval (0,1). Finally,

comparisons are made for sets of data generated with the

fixed 8 values considered in the comparisons discussed in
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Chapter IV. In Chapter VII some of the limitations of the

findings of this study are discussed. Included is a dis-

cussion of the sensitivity of the adaptive estimators to

changes in sample size and in particular their applicability

in estimating longer series. Chapter VIII concludes the

dissertation with a discussion of the application of the

results of this study. Based on the results of the estima-

tor performance comparisons, recommendations for applied

estimation are given. Some examples illustrating the poten-

tial areas of application of this research are discussed,

and an example demonstrating the application of the adaptive $

estimators in forecasting an economic series is given.



CHAPTER II

BACKGROUND LITERATURE

Estimators Considered

Most of the eleven estimators considered in the Monte

Carlo performance evaluations either appear in the time

series literature or are mentioned in econometric texts.

These include the least squares estimator and several of its

modifications. With the exception of the maximum likelihood

estimate, all of the estimates are based on combinations of

sums of squares and sums of cross products and are therefore

easy to obtain.

The first estimator considered is the ordinary least

squares (OLS) or Gauss-Markov estimator. This estimator is

referred to by Box-Jenkins as the "conditional" least

squares estimator. It conditions on an initial value of the

series which occurred prior to the observation period. This

estimator is derived by the least squares principle of mini-

mizing the sum of squared differences between observed and

fitted values. That is, the estimator minimizes

T ^
SSW() - Z (xt - xt(8)) 2 , (2.1)t-i1

where xt (B) is the fitted value. If we let

xt(8) - E[xtlx1, x2, ..., xt_1] = oxt_ 1 I
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then (2.1) becomes

2 T 2

SS(8) = (xl-$x0 ) + I (xt-xt_) • (2.2)
t= 2

If the unobservable initial value x0 is set equal to its

unconditional mean which is zero, minimization of the result-

ing sum of squares gives

T

bx t2xt
b T 2 (2.3)

The sampling distribution of bI is unknown. Hurwicz

[191 showed that b1 is a biased estimator of 8 and suc-

ceeded in evaluating the bias exactly for samples of size

three. Asymptotic expansions for the mean and variance of

b were obtained by Marriott and Pope (24] and Kendall (211

and extended by White [38] and Shenton and Johnson [331.

The estimator bI is one of the estimators considered in the

studies of Gonedes and Roberts [16], Dent and Min [10],

Copas [9], Orcutt and Winokur (301, and Thornber [36].

The form of the OLS bias was approximated (to order

l/T) by some of the above authors to be -28/T. Using this

approximation as a correction term for bI results in the

second estimator considered:

b2 = [T/(T-2)] b . (2.4)

This estimator was considered in Copas' [9] comparison stud-

ies, and a similar correction for OLS slope bias (where an

intercept term was estimated from the data) was considered

by Orcutt and Winokur [301.



10

The third estimator considered is sometimes referred to

as the unconditional least squares estimator. If there is

sufficient a priori reason to impose the constraint that the

system be stationary, IBI < 1, then the marginal distribu-

tion of x1 is given by:

x 1 rN(0, 2/(1-82))

Then the residual sum of squares would be written

(_2)x 2  T 2
SS(8) = (1-8 )x1  + I (xt-Oxt_1 ) 2 (2.5)

t=2

Minimizing (2.5) with respect to B gives

T
Ix xb3 t-2 t xt

-I

b- t (2.6)
xt_

t=3

Since (2.5) dominates the likelihood function of an AR(1),

b3 is also an approximation for the maximum likelihood

estimator. This estimator is considered in the work of

Thornber [36] and the comparisons of Dent and Min (10].

An idea given by Quenouille [31] for removing the bias

of b, provides the basis for the fourth estimator consid-

ered. This method consists of calculating

b 4 = 2b, - ([bl] 1 + [b,] 2 )/2 , (2.7)

where [bl] 1 is the OLS estimate for the first half of the

sample data and [bl] 2 the OLS estimate for the second half.

Orcutt and Winokur [30] consider this estimator in their

study.
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The Yule-Walker estimator, given for example in Box and

Jenkins [3], is

T

t!2xtxt- 1
t=2

b5 = T+l 2(.8
tx 2 t - 1

It is very similar in form to the least squares estimators

b and b3. Since these three have the same numerator, it is

easily seen by comparing the denominators that lb51 < Ibli <

lb3 1. The Yule-Walker estimator was included in the compar-

ison studies of Dent and Min [10].

The sixth estimator was suggested by K. Alam of Clemson

University as a bias-correction modification to the OLS

estimator (2.3). It takes on the form

T
x 1 x2 + xtxt-1 +xTxT

b t=2 (2.9)6 T (2.9)

which is

X1x2 + xT1xT
T 2
t12xt- 1
t= 2 t

Since

x1X 2 + XT-XT 2B

T T-

t=2

this term affords a bias correction of very nearly the same

magnitude as the 20/T correction used in constructing esti-

mator b2 .
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For each of the first six estimators considered, the

imposition of the stationarity condition, 181 < 1, on the

generating process does not guarantee that these estimators

will result in stationary estimates for any given short

series. In this study, since all series are generated with

181 < 1, the resulting estimates were constrained to be less

than or equal to one in absolute value by truncation, as is

often done in practice and also was done in other Monte

Carlo studies. This was accomplished by using the following

simple truncation rule:

bi if lbil < 1

b + if b> 1 for i = 1, 2, ..., 6.

Throughout the Monte Carlo estimator comparisons in this

dissertation, these constrained versions of estimators one

through six were used.

The next estimator considered is attributable to

J. Burg and was reported by Foster [15]. The AR(l) case of

Burg's estimator can be derived as a sum of squares minimi-

zation. Due to the symmetry of the joint distribution of

xi , x2, ..., xT , we see that the covariance structure of

**{x : t - 0, ±i, ±2, ...I, where xt = xT-tl, is the same as

the covariance structure of {xt: t = 0, ±1, ±2, ... }. Hence,

we can think of X1 , x2, ... , xt as another (reversed)

realization of the same series having sum of squared resid-

uals of the same form as (2.2):

* * *2 T , * 2
SS (B)- (x1 - Bx0 ) + I (xt - Sx t.1 )

t=2
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Substituting for x. values, we get

1T
* 2 T2

SS (a) = (XT - OXT+1) + I (xt_ - 8xt) 2 (2.10)
t=2

If the unobservable XT+l is set equal to its uncondi-

tional mean of zero, just as was x in (2.2) when deriving

the conditional least squares estimator in (2.3), then mini-

mizing the average of SS(8) in (2.2) and SS (8) in (2.10)

results in

T
2 1

b = t " (2.11)7 = 2+2T 21 + T  I t-1
t=3

Review of the econometric literature revealed no use of

Burg's estimator.

The eighth estimator considered is similar in form to

the sample correlation coefficient. This estimator, given

in Murphy [27] takes the form

T

b = t!2xttl-. (2.12)

T T+1 2

2 t=2

The Durbin-Watson statistic (see [12]) forms the basis

of the ninth estimator. Since this statistic takes on a

value between zero and four, depending on the strength of

the autocorrelation in the series, the form

b = 1 - (D/2) , (2.13)
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where

T 2
I (xt - xtI)
t=(2.13)
T+1 

2

t-2xt-l

is the Durbin-Watson statistic, takes on a value between

negative one and one. Thus b9 estimates the value of the

autoregressive parameter. The estimator is given in Murphy

[27] and in Johnston (20].

The tenth estimator considered is given by Maulinvaud

[26], and takes the form

T

I- fxT/(T-1)]t 2 xt t-i 1
b = T (2.14)
b10  T+I- 2

xt- 1t=2

The estimators b7 , b8, b9 , and b10 can all be shown to be

less than one in absolute value. This guarantees that they

give only stationary estimates for the autoregressive para-

meter.

The final estimator considered in the performance eval-

uation is the maximum likelihood estimator (MLE). The exact

likelihood function for an AR(l) is given by

L(8,o2 IL = (2 ca2 )T/2[I/(IB2)1
- I/ 2

2 (2.15)
expf[-l/(2a2)] • SS(8)}

where SS(8) is the sum of squares given in (2.5). Substitu-

ting the maximizing value of a 2 for a given value of 8 into

(2.15) will produce a likelihood function that is independent
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of a2 (see [4]), namely

L(81x) = (21re/T)-T/ 2 [/(-8 2 )] - I / 2 [SS( 8 )-T/ 2

(2.16)

Finding bll, the value of 8 which maximizes (2.16), is equi-

valent to finding the value of B which minimizes

SS(8) * (1 (1-2)]/T . (2.17)

The function in (2.17) must be minimized over the interval

(-1, 1) through the use of some numerical technique. For

our purposes a simple though rather crude search routine was

used. This was the iterative three point evaluation, inter-

val bisection method used by Clawson [7].

Comparison Criteria

In order to adequately evaluate the overall performance

of the eleven estimators discussed above, four criteria for

comparison were chosen. These were bias, mean absolute

error, mean squared error (MSE) and mean squared prediction

error (MSPE). Several comparison studies have considered

bias. Therefore, for comparison with these studies this

criterion was included. For any given estimator 8, the

bias in estimating a parameter $ is defined to be
A

Bias(8) = E[8 - B1

The empirical bias of an estimator 8, as computed for para-

meter value 8 in each Monte Carlo run, is defined to be

k^il(Oi - B)/k

i-l

where k is the number of replications performed in the run.

Since positive and negative sample errors tend to cancel
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each other out, mean absolute error was felt to be a more

revealing criterion of location accuracy than bias. The

mean absolute error of an estimator 0 is defined to be

Mean Absolute Error(S) = E[Ij - $1]

The mean absolute error of an estimator for a Monte Carlo

run is computed as

kSilj i - BI/k

for k replications. The third estimation criterion compared

was that of mean squared error. The mean squared error of

estimator 8 is defined to be

2MSE(B) = E(- )

The empirical MSE is computed as

k (a _s 0)21/k
i=1

for k replications. In order to compare forecasting accu-

racy using the various estimates, mean squared prediction

error was compared. The one-step-ahead mean squared predic-

tion error associated with estimator a is given by

A A 2
MSPE(O) = E[(xt - x t ) 2

where xt = ax t_. The empirical one-step MSPE in the fore-

casting of one series is given by

S(x - xt) 2/m
t-i

where m is the number of one-step-ahead post-sample predic-

tions made. For each series, MSPE of a given estimator was
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computed as the average squared error in making twenty one-

step-ahead predictions for that particular series where the

parameter estimate used in the prediction was computed using

the given estimator. The MSPE reported in this study is the

empirical MSPE averaged over all one-step predictions and

all replications, namely

k m . 2
I [ I (xt - xt) /m]/k

i=l t=l

Previous Simulation Studies

Previous estimator comparison studies which considered

AR(l) parameter estimation have compared only a few of the

eleven estimators considered in this study. They generally

reported comparison results on the criteria of bias and/or

MSE at fixed 0 values. They all differ considerably as to

which 8 values were chosen, what sample sizes were consid-

ered, and how many replications were performed. In Table I,

some references to the estimators considered in this study

are listed. References to previous simulation studies which

included some of these estimators are given by estimator and

criterion of consideration. The sparseness of entries in

Table I illustrates the need for a comprehensive comparison

of these estimators.

For AR(l), Copas [9] compared the performance of mean

likelihood, OLS, MLE, and sample autocorrelation estima-

tors. He considered the one-parameter model (1.2) with

sample sizes n = 10 and 20, for 100 replications. His
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Table I. Summary of Estimator References for This Study
and References to Previous Simulation Studies
Which Have Included These Estimators.

Estimator General Bias MSE MSPE

1 [3,20,26,271 [9,10,30] [9,10,16,30,36] (16,301

2 [20,21,24] [21,24,30) (301 (301

3 [3,361 (101 [10,361

4 [30,311 [30,31] [30] [301

5 [31 [10] [101

6

7[151

8 (27]

9 [12,20,271

10 [26]

11 (3,4,9,10,36] [9,101 (9,10,16,361 (161
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simulations considered two approaches for starting series

generation:

(1) x I =1

(2) x1 % N(0,l/( -2

For x = 1 studies he used B = -.9(.1).9, n = 10, and for

model (2) used $ = -. 9(.1).9 for n = 20 and a = -.8(.2).8,

n = 20. He compared on the criteria of bias and MSE. His

conclusions were that mean likelihood gave the smallest MSE

in the range (0,.6), OLS being better for B > .6 for initial

value (1). For initial value (2), MLE was slightly better

than OLS for 8 > .6. (This disagrees with results of

Thornber and of Dent and Min who found MLE performance under

condition (2) to be not so good in (.5,1)).

Thornber [36] considered the AR(l) model with one-

parameter. He investigated the performance of

(1) OLS ("conditional" least squares),

(2) unconditional least squares,

(3) MLE, and

(4) Bayesian minimum expected loss.

He considered ten values of 8 on the interval (0,1),

using 100 replications of sample size 20. His results

showed that MSE was smaller for MLE over (0, .5), but

Bayesian and conditional least squares (truncated to one if

greater than one) had the smallest MSE over (.5,1).

Orcutt and Winokur [301 studied two-parameter AR(1),

i.e.,

xt=BO80 Xt-1 + ct . (2.18)
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They showed the extent of bias in OLS estimation of the

slope parameter for 1000 replications on samples of size

10, 20, and 40 for 0 values of -1(.25)0, and 0(.1)1.1. They

found OLS estimates of 8 negatively biased for 8 > -0.5 with

increasing bias as sample size was decreased and B increased

from -0.5 to 1.0. They considered two bias-corrected esti-

mators based on corrections given by Marriot and Pope [24]

and Quenouille [31] (similar to our estimators b2 and b4 but

for the two-parameter case), which they compared with OLS

and MSE. They found both modifications were essentially

unbiased for 8 values of 0,.3,.6,.9,!_.0 and sample sizes 10,

20, and 40. For smaller 8 values, the OLS estimator, though

biased, still had the lowest MSE. For large 8, the Marriott

and Pope correction had smaller MSE. In considering predic-

tive performance, they reported on 2, 3, and 4 period pre-

dictions. They found the OLS fitted model predicted better

(smaller prediction error variance) than either of the bias-

corrected estimation models.

Gonedes and Roberts [161 studied the two-parameter

AR(l) with emphasis on estimator performance for nearly non-

stationary series. They concluded that if sample size is

small and if good one-step prediction is the goal, then one

should difference the data (as if it were non-stationary)

and treat the differences as a stationary AR(l). They did

simulations by generating data from stationary AR(1) (with

- 0) and then studying estimation and prediction by
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(1) Comparing OLS, mode of joint posterior density
of 11, 8, and a, and random walk without drift
on the original series;

(2) Comparing OLS, modal, and random walk on series
of first differences.

They considered 6 = 0 .2,.5,.7,.9,.99 for sample sizes

n = 20, 30, and 60, based on 50 replications. For S > .7,

MSE was always less for the modal estimator than for OLS.

For 8 < .7, MSE was nearly the same for the two while OLS

had a slight edge. For 20 one-step predictions, the modal

estimator showed a slight edge over OLS in MSPE for larger

8 and smaller n, but the margin narrowed rapidly as 8 was

reduced or n was increased. However, for 8 > .9, for

all n, MSPE for random walk was substantially lower than for

OLS or modal. This was also the case for OLS and modal on

first differences. However, differenced models were much

better than undifferenced and were only slightly outper-

formed by random walk.

Dent and Min [10] considered six ARMA models with res-

pect to properties of a variety of proposed estimators.

These mainly involved MLE and least squares estimators.

For the AR models they compared:

(1) Unconditional least squares

(2) Conditional least squares

(3) Yule-Walker estimator

(4) Approximate maximum likelihood

(5) Exact maximum likelihood

(6) Kendall's estimator (based on higher-order sample
autocorrelations)
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(7) Quenouille's estimator (also based on higher-
order sample autocorrelations)

They used sample sizes of n = 100 throughout, with 100

replications. For AR(1) they considered twelve B values

(±.9, ±.7, ±.6, ±.5, ±.3, ±.l) for generating data and com-

pared estimator performance on the criteria of bias and

MSE. Their general conclusions were the following: for

AR(l) little differentiation could be made between estimators

considered; bias tended to be negative for all estimators

with Quenouille having minimum absolute bias at positive 8,

while MSE was minimum for exact MLE (0, .5) or unconditional

least squares (.5, 1).



CHAPTER III

SIMULATION DESIGN

In making estimator comparison studies and developing

adaptive estimators, many Monte Carlo simulation runs were

made. A run of the simulation consisted of the generation

of a large number of replications and the computation of

summary statistics. These summary run statistics consisted

of averages and variances by estimator and parameter value

over all replications in a run. Each replication included

the generation and parameter estimation of one series for

each parameter value considered.

For these Monte Carlo simulations, a sample size

(series length) of 20 was chosen, since we are interested in

estimator performance when considering samples as small as

would likely be encountered in the study of economic

series. Also, in order to compare the results with the

results of previous studies, 20 seemed to be most appropri-

ate since it was the most commonly used sample size.

For each replication of a simulation run, 40 standard

normal shocks were generated for use in the construction of

one series for each parameter value. These standard normal

variates were generated using a method of Marsaglia and Bray

[25] using the uniform (0,I) variates generated by the pseu-

do-random number generator given by Lewis, Goodman, and

Miller [23]. The particular generator described by them is
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xi+ 1 , Axi (mod p) where p = 231_1 and A = 16807. The

authors cite numerous test results substantiating the effec-

tiveness of the generator.

Since all series were generated under the assumption of

s+ationarity, 181 < 1, which implies that each

x ItN(O, a2/(1 - 02))i

an initial observation can be considered to be

x I 1 N(O, l/(l - 82))

For a given parameter value, an initial value was generated,

and, using model (1.2), xt = $xt_1 + Et . an AR(1) series of

length 40 was generated. Using the first 20 terms of this

series as the sample data, sums of squares and cross pro-

ducts were computed, each estimator evaluated, and the

values accumulated. Any estimates greater than one were

truncated to one. Then, for the next parameter value, an

initial value was generated, a series generated, and estima-

tors evaluated. Once this was done for each parameter value

considered, the entire procedure was repeated for each addi-

tional replication. Here, parameter values of .1(.l).9, .95,

.99, and .999 were selected. These parameter values were

chosen to provide representation throughout the positive

range of stationarity with some emphasis on performance near

the boundary of stationarity.

The measure of MSPE of an estimator for one series con-

sisted of the average squared misses of twenty one-step-

ahead predictions when using that estimator. This was the
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reason for initially generating series of length 40. As

discussed above, the first 20 observations of the series

were used for obtaining parameter estimates. Then using the

fitted model, and the last observation of the 20, the 21st

term was forecast. The square of the amount by which this

predicted value of the 21st term missed the actual 21st te-m

of the series was the first component of the sum of the

squared prediction error. The second one-step prediction

used the actual 21st term of the generated series along with

the same fitted model for forecasting the 22nd term, etc.

This procedure was repeated 20 times for each estimator on

each series.

At the end of each run of the simulation, several quan-

tities were computed and a table output for each estimator

at each parameter value considered. These quantities inclu-

ded the empirical form of bias, mean absolute error, MSE,

and MSPE as defined in Chapter II. One such table is shown

as Table II, which is the output for estimator 9 from one

simulation run of 10000 replications. In Table II, the

first column shows the 12 parameter values used. The next

two columns show the average and variance of the 10000

parameter estimates for each parameter value. Columns 4

and 5 show the average and variance of (8 - 8) over 10000

replications. For example, for 8 = .1,

10000^
0.03863 - (8i - 0.1)/10000

i-l
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and

10000
0.04468 [ ~(a8 0.1) -0.038631 /10000

i= 1

Similarly, columns 6 and 7 show the mean and variance

of IS - 01, and columns 8 and 9 the mean and variance of

(B - 2) over 10000 replications. Results for MSPE aver-

aged over all one-step predictions and all replications are

given in columns 10 and 11. The final column shows the num-

ber of estimates truncated to one, which for estimator 9 was

always zero.

For estimator performance comparisons, various averages

such as those illustrated in Table ii from 10000 replica-

tions were used. This large number of replications was

necessary to ensure sufficiently small standard errors of

point estimates so that the effectiveness of various estima-

tors could be statistically discriminated. Some preliminary

runs showing averages using sets of 1000 and sets of 5000

replications indicated the need for a larger number of rep-

lications.

For example, when two different sets (different genera-

tor seeds) of 1000 replicates each were run, the typical

difference in MSE between two estimators was in the 0.001 to

0.003 range, which is roughly of the same order of magnitude

as the differences in MSE of the same estimator between sets

of 1000 replicates. For example, the MSE for b1with 8 - .1

was found to be 0.04662 on one run and 0.04973 on the second

-a difference of 0.00311. Similarly, the MSE for b 11 at



28

8-.1 was 0.04665 and 0.05032 respectively, so that the

difference between estimators band b1  was smaller in each

case than the 0.00311 difference between runs for b. Also,

for only 1000 replications there were numerous instances

where the rank order of estimator performance was not pre-

served between sets of replicates, especially for 8 in the

range of 0.7 to 0.9. Of course, the same lack of clear

separation between estimators occured with MSPE. Differ-

ences between runs for the same estimator frequently were in

the 0.01 to 0.025 range while several estimators within runs

differed by less than 0.01.



CHAPTER IV

ESTIMATOR PERFORMANCE COMPARISONS

In this chapter, comparisons of performance of the

eleven estimators are considered. The performance with

regard to each of the four criteria of bias, mean absolute

error, mean squared error (MSE), and mean squared prediction

error (MSPE) is discussed for each of the parameter values

considered. In printing our initial simulation results, one

table was given for each estimator. One of the eleven such

tables is shown as Table II. The contents of this table

were discussed in Chapter III.

In order to compare these results by parameter value,

numerous tables of statistical multiple comparisons were

computed. One such table is shown as Table III. Each of

these tables indicates estimator performance similarities

and differences for one of the criteria at a given parameter

value. The entries in Table III are t values computed for

comparing each pair of means. Since the sample sizes are so

large, the t's can be compared to a critical value of the

standard normal z. Here Bonferroni's method was used to

find this critical value for the 55 simultaneous tests of

equality of means in each table. For a test at the

= .01 significance level, the critical value is the

(1 - .01/110) or 0.999909 fractile of the standard normal

distribution, which is approximately 3.75. Thus, we can see
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in Table III that each of the estimators (6, 9, 3, 2, 11)

has significantly smaller MSE than that of each of the esti-

mators (1, 8, 5, 10). in fact each of the estimators (6, 9,

3, 2) has significantly smaller MSE than each of the esti-

mators (7, 4, 1, 8, 5, 10). These multiple comparison

results are summarized in Table A-I - Table A-IV. These

tables give performance ranking of each estimator, along

with statistical class groupings of equivalent performance

for each criterion at each parameter value. In these tables,

any two estimator numbers not underscored by the same line

have significantly different means for the given criterion

at the given parameter value. Any two estimator numbers

underscored by the same line are not significantly differ-

ent. The estimator numbers in each case are arranged from

left to right in ascending order of the criterion averages.

Based on the multiple comparison results, Tables IV

and V were constructed by placing some estimators in a

"best performance" group and some in a "worst performance"

group for each criterion. For each set of parameter values,

the estimators in the same group are usually not statisti-

cally different in their performance, while each estimator

in the "best" group is significantly better than each esti-

mator in the "worst" group. This categorization of estima-

tor performance emphasizes several patterns and trends which

are present.

Let us consider Table IV showing best and worst bias

performance results. In general, there is a great deal of
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Table IV. Best and Worst Estimator Performance Groups at
Fixed a Values for Criterion of Bias.

8Values

.1 .2 .3 .4 .5 & .6 >.6

Best
Bias 4,3,2,6,11 6,2,4,3 2,6,4r9,3 9,2,6,4 6,2,4 6,2

1,7,8,10,5

Worst 9 8,9,10,5 8,10,5 8,5,10 1015 5,10
Bias
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inconsistency in performance for (.1 < B < .4) with much

more consistent results for B > .5. Estimators 2 and 6,

which incorporate bias correction terms to OLS, seem to per-

form well throughout the parameter range. In fact, estima-

tor 6 dominates all other estimators for B > .5.

In Table V, which shows best and worst estimators in

terms of mean absolute error, MSE, and MSPE, there are sev-

eral apparent patterns. Performance inconsistencies within

a criterion occur mainly at B = .7, .8, and .9. Criteria

are very similar in terms of best and worst performance

groups at all parameter values except B = .7, .8, and .9.

Estimator 9 appears to exhibit the best overall performance.

It shows the smallest mean absolute error, MSE, and MSPE for

(.3 < B .9) and is significantly better than all other

estimators for (.5 < B 1 .8). Also for B = .95 and B = .999

it ranks as the best estimator of the ones which do not gen-

erate any non-stationary values.

The fact that in our simulations any estimate greater

than one is truncated, explains the prominence of estimators

2, 3, and 6 for B > .9. For the larger parameter values,

the large number of these truncations has a dominant influ-

ence on the performance values. For instance, for estimator

2 at B = .9 there were 3758 truncations out of the 10000

estimates; at 0 = .95 there were 5706; at B = .99 there were

8174; and at 8 = .999 there were 9469. There were very

nearly the same number in each case for estimator 6 and only

slightly fewer for estimator 3. Obviously for these
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estimators, as the true parameter value got closer to one,

while at the same time a large percentage of the estimates

became one, the performance appeared to be very good. This

same truncation influence occurs with estimators 1 and 4,

but they each have considerably fewer truncations than do

estimators 2, 3, and 6.

We can notice that estimators 2, 4, and 6 are signifi-

cantly worse than all others throughout (.1 < 8 .6), and

probably only appear much better for B >.7 due to the influ-

ence of the truncations discussed above. This is in con-

trast to the good performance in terms of bias observed for

these three estimators in Table IV.

and 10 aea interestperfornte cassti(alog with,

ant i apso interestngrtorne thas esiaors 5,i8,

estimator 9) or second only to estimator 9 for (.1 < 8 < .6),

and then rapidly drop to becoming the worst in performance

as 8 approaches one. In fact, for B > .9 estimators 5 and

10 constitute the worst class. This performance seems to

relate to the poor performance of these estimators in terms

of bias as observed in Table IV. Two of the more common

traditional estimators, OLS (estimator 1) and MLE (estima-

tor 11), exhibit only moderate performance throughout.

The only direct comparisons with previous studies which

can be made are the studies of Copas (9], Thornber [36], and

Dent and M4in [101, all of whom investigated the one-parame-

ter ARMl. All three of the above studies investigated OLS

(constrained to be less than or equal to one) and MLE.
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Copas found the differences in bias and MSE between these

two estimators to be small and nearly constant over 8 with

MLE having a uniformly lower MSE than OLS. Dent and Min

found MSE performance of OLS to worsen relative to MLE as 8

increased. In contrast to this, Thornber found MLE to have

smaller MSE over (0,.5) and larger MSE for B > .6. We find

almost no difference in the bias of these two estimators at

all parameter values considered. We also find almost no

difference in the MSE performance of these two estimators

for (.1 < 8 < .5) (with neither being dominant), but find

MLE to have a slight edge for all 8 > .6.

Thornber, and Dent and Min also investigated uncondi-

tional least squares. They both found that neither uncondi-

tional least squares nor MLE dominated the other with

respect to MSE. They both found the sample loss functions

of the two estimators to cross, with MLE having smaller MSE

for small 0, and unconditional least squares having smaller

MSE for larger B. We also find the sample loss functions of

these two estimators to cross in the same manner. The only

differences seem to be in where they cross. Dent and Min

found them to cross at 8 = .5; Thornber found them to cross

between B = .6 and 8 = .71 and we find them to cross between

B - .7 and B - .8.

Even though the investigations of Orcutt and Winokur

[301 were with the two-parameter AR(l), we can compare with

one of their findings. In comparing OLS, and two bias cor-

rections to OLS, they found that the bias-corrected
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estimators did not perform as well as OLS in terms of MSPE.

Similarly, Copas found the MSE of a bias-corrected OLS esti-

mator to be larger than the MSE of OLS. We see from our

study that bias-corrected estimators 2, 4, and 6 all perform

very poorly in terms of MSPE throughout most of the parame-

ter range.

The overall results of these estimator comparisons

indicate the need for additional investigation. The fact

that the groups of best and worst estimators changed consid-

erably over different values of the parameter range point

out the need for some sort of selection strategy which, for

any given problem, selects an appropriate estimator from

among several estimator candidates, as opposed to always

using some particular one estimator. In Chapter V, the

attempts at development of such an estimation strategy will

be discussed.



CHAPTER V

DEVELOPMENT OF ADAPTIVE ESTIMATORS

The Need for an Applied Estimation Strategy

The information about estimator performance at fixed

parameter values gained from the Monte Carlo study is of

little direct benefit in any applied estimation or forecast-

ing problem. Unless the researcher has some strong a priori

knowledge about the location of the true parameter value

upon which to base the selection of an estimator which per-

forms well for such a parameter value, he does not have a

basis for choosing between available estimators. Of course,

based on the results presented in Chapter IV, one would

probably choose estimator 9 because of its good performance

at a number of the parameter values studied. However, since

estimator 9 was not best for each criterion at all parameter

values, it was felt that an estimation strategy which incor-

porated the use of several estimators might perform better

overall than any individual estimator such as estimator 9.

In this chapter we discuss the development of such an esti-

mation strategy.

Construction of Adaptive Estimators

The applied estimation strategy developed here uses a

two-step estimation process. A preliminary estimate is

obtained at the first step. For a given criterion, the

value of this estimate determines the choice of a
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particular estimator for use at the second step in obtaining

a final estimate. Two types of such adaptive estimators

were developed in this study. The first type of adaptive

estimators is based on the use of only standard estimators on

the second step, while the second type of adaptive estima-

tors includes the use of some "ad hoc" modifications to the

standard estimators for use in the second step. The maximum

likelihood estimator was not included due to its computa-

tional difficulty relative to the other estimators consid-

ered. Adaptive estimators were developed for the criteria

of mean absolute error, MSE, and MSPE.

The development of these adaptive estimators was depen-

dent upon two requirements: the choice of an estimator for

use in obtaining the preliminary estimate, and a set of

rules for selecting the final estimator based on the value

of the preliminary estimate and the estimation criterion of

interest. In this study, estimator 7 was chosen as the pre-

liminary estimator. This choice was based primarily on the

fact that estimator 7 does not yield any non-stationary

estimates, and it has consistently good MSE performance for

all parameter values. Obviously, based on the results dis-

cussed in Chapter IV, estimator 9 would appear to be a log-

ical choice. However, much preliminary work was done using

estimator 7 before estimator 9 came to our attention. Since

estimator 9 was later incorporated into the set of second-

step estimators, it remains unclear as to whether the recon-

struction of the adaptive estimators using estimator 9 as

the preliminary estimator would offer any overall improve-

ment.
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An empirical determination of the rules for selection

of second-step estimators was accomplished through the use

of additional Monte Carlo runs. An initial run was used to

determine series "similarities" based on the step-one esti-

mate for a series. Different randomly generated series were

grouped together if their estimation resulted in very simi-

lar values for estimator 7. This was accomplished in the

following manner. First, a value of a was chosen randomly

from the interval (0,1). Using this value of B, an AR(l)

series of length 20 was generated in the same manner as des-

cribed previously. The estimate b 7 was computed for this

series. Depending on the value of b 7 0 this series was

assigned to one of eleven "cells". These "cells" are subin-

tervals of the parameter range, namely (-1,0), (01.1),

(.l,.2), (.2,.3), .. ,(.8,.9), (.9,1). This process was

repeated until 10000 series had been assigned to each cell.

A cell by cell estimator performance analysis was then

made. For the first type of adaptive estimators, this meant

the same type performance analysis runs as for the study

discussed in Chapter IV. It consisted of determining which

standard estimator had the beat performance in each cell for

each of the criteria of interest. The results of these runs

are summarized in Table VI, which actually defines the first

type of adaptive estimators. This table illustrates, for

instance, that in the application of the first type of adap-

tive estimator, if the estimate b 7 is 0.38, and MSE is the

criterion of interest, then estimator b3 should be used for

obtaining a final estimate.
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Table VI. Definition of First Type of Adaptive Estimators
(Al) Showing Second-Step Estimators for Use in
Each Cell.

Cell b7 -range Mean Abs. MSE MSPE
7 Error

1 (-1,0.) b9  b9  b9

2 (0.,.I) b b b
9 9 9

3 (.l,.2) b9  b9 b9

4 (.2,.3) b9  b9  b9

5 (.3,.4) b 3  b3  b9

6 (.4,.5) b7  b7  b3

7 (.5,.6) b7  b7  b3

8 (.6,.7) b7  b7  b3

9 (.7,.8) b7  b7  b9

10 (.81.9) b 7  b7  b9

11 (.9,1.) b7  b7  b7

____ ___ ____ ___ ____ __ 7
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In an effort to improve on the performance of the first

type of adaptive estimators, considerable cell-by-cell

investigation was done in search of "ad hoc" modifications

to standard estimators which would improve their performance

in terms of one or more criteria in some particular cell.

In some cases ad hoc modifications which gave improved per-

formance were functions of the estimator being modified. In

other cases these modifications were just constants. These

constants were usually related to the size of the bias

observed for some estimator in a particular cell. In most

instances these modifications were constructed in a manner

so as to reduce bias in a particular cell without causing

enough of an increase in variance to allow for a net reduc- [
tion in mean absolute error or MSE.

Numerous modifications of various forms were consid-

ered. Modifications were made primarily to estimators 7 and

9 since they both had a small variance within each cell and

also gave only stationary estimates. Initially, terms of

the form (-bi) 2/c were added to estimator bi, where c is a

positive integer. This form was chosen for several rea-

sons. For one, the resulting estimator was still station-

ary. Since the term (1-bi)2/c inflated the estimate bi, yet

still resulted in estimates less than one, the resulting

variance of the modified estimator was smaller. Also, for

cases where the bias of bi was negative, the added term

served to reduce this negative bias. After preliminary

investigations showed that this term was too small as a
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modification for large b i values, the very similar form

(1-0~)/c was adopted. Again, for c > 2, the addition of

this term still resulted in stationary estimates with the

desirable properties discussed above.

Investigating the performance of the estimator

b7 + (1-b 2)/c for values of c between 2 and 10 indicated

that for large values of b 7, c needed to be small; while

for smaller values of b 7, c needed to be larger. Thus for

some of the lower cells the estimator b7  b +- (1-b 2)/10

proved to be an ad hoc estimator which resulted in better

performance for some criteria. In order to generalize the

selection of c for use in different cells, the selection of

c was tied to the size of the estimate b7 , by letting c - c

where c* lOfl - 110-b71l) which resulted in c

taking on values between 2 and'll. The resulting estimator

b; b7 + (1-b 2)/c was another ad hoc estimator which was

used successfully in some cells with improved performance

for some criteria. Since the bias of estimators 7 and 9 was

positive in the upper cells, estimators b 7 and b;7 and sim-

ilarly modified b 9 did not always show improved performance

for any criterion in these cells, as the addition of the

modifying terms resulted in extremely large positive bias.

In an effort to correct for this positive bias, even though

variance was usually worsened, several estimators were

investigated which were constructed by subtracting terms of

the form described above.. one such ad hoc estimator which

performed well in the upper cells was the estimator b9

b- (1-b 2)U10.
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Even though many ad hoc estimators of the form above

were investigated, the only three of these estimators used

as second-step estimators in the final ad hoc adaptives were

b7 , b7 , and b9. Other second-step estimators included these

or standard estimators adjusted by the addition or subtrac-

tion of a constant. For some criteria in some cells, nei-

ther type modification resulted in better performance than

the best standard estimator. In that case, the best stand-

ard estimator was used as the second-step estimator.

The resulting set of second-step estimators for each

cell which make up the ad hoc type adaptive estimators are

given in Table VII. In order to illustrate the choice of

these ad hoc estimators for a representative cell, let us

consider cell 4. The results of the cell 4 performance

analysis for the ten standard estimators and for three ad

hoc estimators, giving means and variances of parameter

estimates, and empirical bias, mean absolute error, MSE,

and MSPE are given in Table VIII. In Table VIII we see

that the smallest mean absolute error, MSE, and MSPE of the

ten standard estimators is exhibited by estimator 9. We

can notice that b; has in fact over-corrected for the nega-

tive bias of b7, resulting in a substantial positive bias

but with a slightly smaller variance. It is also notewor-

thy that b7 shows a smaller MSPE than all of the standard

estimators, in spite of its positive bias. To eliminate

this bias of +0.04495, this quantity was subtracted as a

constant adjustment to b7 . This resulted in a mean
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Table VII. Definition of Second Type of Adaptive Estimators
(A2) Showing Second-Step Estimators for Use in
Each Cell.

Cell b7 -range Mean Abs. MSE MSPE
Error

7 7 71 (-i,0.) b7 + 0.2 b7 + 0.21679 b7 + 0.21679

2 (0.,.1) b7 + 0.06853 b7 + 0.06853 b7 + 0.1

3 (.l,.2) b' b + 0.00502 b + 0.00502

4 (.2,.3) b7 - 0.04495 b7 - 0.04495 b9 + 0.05

5 (.3,.4) b b b7

6 (.4,.5) b9 - 0.02 b9 - 0.02 b
9 9

7 (.5,.6) b9 - 0.03 b9 - 0.03 b3

8 (.6,.7) b 9 - 0.03 b9 - 0.03 b9

9 (.6,.8) b9 - 0.03 b9 - 0.03 b990 (.7,.8) b9 - 0.03 b 9- 0.03 b 9

11 (.9,1.) b - 0.02 b - 0.02 b9
___ __9 9 9___ _

b7 - b7 + (1-b2)/{0(1 - ((10 b71/10)) + 1}.

* 2
b9 b 9- (1 - b9)/10.

Sb + (1 -b)/10.7 /i0.
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Table VIII. Estimator Performance Results for Cell 4.

Estimator E() Var(j) Bias Mean Abs. MSE MSPE
Error

1 .25119 .00106 -.05846 .15335 .03767 1.06239

2 .27910 .00131 -.03055 .15061 .03533 1.05704

3 .26730 .00133 -.04235 .15065 .03568 1.05787

4 .27166 .00898 -.03799 .16570 .04348 1.06775

5 .23738 .00089 -.07227 .15609 .03967 1.06678

6 .27988 .00678 -.02977 .15942 .04008 1.06005

7 .25055 .00083 -.05910 .15291 .03749 1.06240

8 .24399 .00087 -.06565 .15449 .03857 1.06448

9 .28994 .00203 -.01971 .15006 .03465 1.05433

10 .23734 .00090 -.07230 .15613 .03969 1.06681

b .35460 .00074 +.04495 .15712 .03599 1.05083

b - .04495 .30965 .00074 0.0 .14997 .03397 1.05265

b9 + 0.05 .33994 .00203 +.03029 .15393 .03518 1.05058

9- 'l -". . .. .. 1
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absolute error value of 0.14997 and a MSE value of 0.03397,

both slight improvements over estimator 9. A constant cor-

rection for the negative bias (-0.01971) of b9 reduced the

MSPE of b9. However, over-corrections resulting in positive

bias continued to reduce MSPE even more. The MSPE appeared

to be near-minimum with a value of 1.05058 for the estimator

b9 + 0.05. Hence, 0.05 was used as the constant correction

factor.



CHAPTER VI

VALIDATION OF ADAPTIVE ESTIMATORS

In order to assess the improvement in performance

offered by the two types of adaptive estimators, additional

Monte Carlo validation runs were made. Three different

methods of data generation were used in order to afford dif-

ferent types of validation comparisons. Fo~r each of these

types of comparison, the performance of the two types of

adaptive estimators was compared with the performance of

some or all of the standard estimators.

For the first method of data generation, $ was drawn

randomly from the interval (0,1). Using this 0 as the true

parameter value, a series of length 40 was generated, param-

eter estimates were computed based on the first 20 terms of

the series, 20 one-step predictions of the last 20 terms of

the series were made, and statistics were accumulated.

Again, this process was replicated 10000 times. For the

second method of data generation, performance validation

runs were made for 0.1 length parameter subintervals of the

interval (0,1). For each of these runs, 8 was drawn ran-

domly from a subinterval, a replication performed as descri-

bed above, and the process repeated so as to acquire 10000

replications in that subinterval. The third method of data

generation was analagous to that of the simulation runs dis-

cussed in Chapter IV. For these runs, 10000 replications

were performed using each of several fixed 8 values.
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Throughout the remainder of this chapter, we will dis-

cuss the performance comparison results of these validation

runs for each of the three methods of series generation des-

cribed above.

Interval (0,1) Comparisons

For the first method of data generation, where 6 was

randomly drawn from the interval (0,1), the two types of

adaptive estimators were compared with all eleven of the

standard estimators considered in Chapter IV. A set of sta-

tistical multiple comparisons were computed for each of the

three criteria of mean absolute error, MSE, and MSPE. Here

each of these sets involved 78 simultaneous pairwise compar-

isons. Again, Bonferroni's method was used to find the cri-

tical value for testing at the a = 0.01 significance

level. From these tables of multiple comparison values (of

the form of Table III, Chapter IV), Table IX was construc-

ted. Table IX shows performance ranking of each estimator,

along with statistical class groupings of equivalent perfor-

mance, for each criterion. In this table, any two estimator

numbers not underscored by the same line have significantly

different means for the given criterion. Any two estimator

numbers underscored by the same line are not significantly

different. The estimator numbers in each case are arranged

from left to right in ascending order of the criterion

averages.

The results displayed in Table IX indicate good per-

formance characteristics for the adaptive estimators. The
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Table IX. Estimator Performance Groupings for First Type of
Validation Run (0 Drawn from the Interval (0,1)).

Mean Abs.
Error A2 Al 9 11 7 8 1 5 10 3 2 4 6

1453 A2 Al 9 11 7 8 5 10 1 3 2 4 6

MSPE A2 9 Al 11 7 3 1 8 2 6 4 5 10

Al represents the first type of adaptive estimators based on the
use of standard second-step estimators.

AZ represents the second type of adaptive estimators based on the
use of ad hoc second-step estimators.
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second type of adaptive estimator, A2, based on ad hoc

second-step estimators, is statistically better than any of

the other estimators for mean absolute error and MSE. For

these two criteria, the first type of adaptive estimator,

Al, based on standard second-step estimators is second best,

and along with estimator 9, forms a class which is statis-

tically better than all other standard estimators. The

results for MSPE are not as pleasing. Even though the type-

two adaptive estimator does result in the smallest MSPE,

this value is not significantly smaller than that of several

other estimators.

Some of the numerical results from this first type of

validation run are given in Table A-V. This table shows

each criterion mean and standard error for each estimator.

These numbers formed the basis of the multiple comparisons

summarized in Table IX. A look at some of the means given

in Table A-V illustrates the order of magnitude of differ-

ence between estimator performance. For instance, consider

the criterion of MSE. The difference in MSE performance of

the two traditional estimators OLS and MLE was only 0.0011.

The largest improvement over OLS offered by any standard

estimator was 0.0055 by estimator 9, which is roughly the

samne as the improvement over OLS offered by estimator Al.

However, the MSE improvement over OLS offered by estimator

A2 was 0.0128, which is twice as large as the differences

between OLS and Al or 9, and over ten times as large the

difference between OLS and MLE performance.
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Subinterval Comparisons

For the second method of data generation, comparisons

were made in each 0.1 length subinterval of (0,1). These

comparisons involved criterion means and standard errors

for each estimator in each subinterval. These means and

standard errors for the criterion of MSE are shown in Table

A-VI. The performance of the two types of adaptive estima-

tors was only compared with a selected few of the best other

estimators in each subinterval. Based on the fixed-param-

eter results of Chapter IV, only those estimators which

appeared in the "best" group for some criterion at the

parameter values which constitute the endpoints of a subin-

terval were selected for comparison in that subinterval.

This resulted in varying numbers of pairwise comparisons for

the different subintervals. Again, simultaneous multiple

comparisons were made at the a = 0.01 level of significance

using Bonferroni's method. The results of these comparisons

were used in the construction of Table X. This table shows

the three best performing estimators for each criterion in

each subinterval. The two types of adaptive estimators

again perform well overall, but do not outperform all of the

standard estimators in the subintervals close to one.

Comparisons at Fixed 8 Values

The third method of data generation required one simu-

lation run analagous to that using fixed B values discussed
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in Chapter IV. On each replication of this run, series were

generated using each of the twelve parameter values used in

the standard estimator comparisons of Chapter IV. The

results of the average performance over 10000 replications

were used for the comparisons. As an example of these per-

formance results, means and standard errors for each estima-

tor at fixed parameter values are given in Table A-VII for

the criterion of MSE. For each parameter value, the per-

formance of the two types of adaptive estimators was com-

pared with the performance of the estimators in the "best"

group for some criterion at that parameter value. As

before, iimultaneous multiple comparisons were made at the

a= 0.01 level of significance. These comparison results

were summarized by listing the three best-performing esti-

mators for each criterion at each parameter value, as shown

in Table XI. As would be expected, performance results at

parameter values as illustrated in Table XI are very simi-

lar to performance results for subintervals associated with

those parameter values shown in Table X.
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CHAPTER VII

SAMPLE SIZE SENSITIVITY AND LIMITATIONS

OF THIS RESEARCH

Sample Size Sensitivity

Since in the development of the adaptive estimators a

sample size of 20 was used throughout, some additional anal-

ysis was done to check the sensitivity of adaptive estimator

performance to a change in sample size. As the sample size

was increased with a resulting reduction in estimator bias,

it was felt that the ad hoc correction factors used in con-

struction of the second type of adaptive estimators might

become ineffective. Hence, some additional Monte Carlo runs

were made using sample sizes of 50 and 100 to investigate

this sample size sensitivity.

Each of the runs for sample sizes 50 and 100 were vali-

dation runs of the same type as the first validation run

discussed in Chapter VI. That is, for each replication, 8

was drawn randomly from the interval (0,1) and, using this

8, a series of the specified length was generated. Since

the sampling variances of the quantities compared in these

runs were much smaller for the larger sample sizes, only

1000 replications were used on each run.

A few results from these validation runs for sample

sizes 50 and 100 are shown in Table XII. In column one,

empirical mean absolute error, MSE, and MSPE are shown for
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Table XII. Some Estimator Performance Results Showing
Sample Size Sensitivity of Adaptive Estimators.

Best Standard ist Type of Adaptive 2nd Type of Adaptive
Estimator (b9) Estimators (Al) Estimators (A2)

n- 50 1. 2.
Mean Abs.
Error 0.09089 0.09084 0.08912 0.08343

MSE 0.01435 0.01442 0.01356 0.01211

MSPE 1.01441 1.01445 1.01253 1.01129

n - 100

Mean Abs.
Error 0.06050 0.06055 0.07329 0.05785

MSE 0.00633 0.00634 0.00911 0.00568

MSPE 1.02064 1.02068 1.02433 1.02016

using constant modifications.

+ using modifications expressed as functions of the sample size.
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estimator 9, which was the best performing standard estima-

tor for each of the three criteria at each sample size. We

can see that the performance results of the first type of

adaptive estimators, given in column two, are very nearly

the same as those of estimator 9 for each criterion at each

sample size. This is similar to the validation performance

results using sample sizes of 20, in that the performance of

estimator 9 and that of the first type of adaptive estima-

tors were not statistically different for either criterion.

However, the performance of the first type of adaptive esti-

mators was usually slightly worse than that of estimator 9

in these runs, where for a sample size of 20 it was usually

slightly better. This fact seems to indicate a slight

change in the relative performance of some of the estimators

which make up the first type of adaptive estimators, or

possibly just a difference in the results of using only 1000

replications.

In order to investigate sample size sensitivity of the

second type of adaptive estimators, validation runs were

made with sample sizes of 50 and 100 using the same second

step estimators developed for sample size 20, as shown in

Table VII. Of course, these ad hoc second-step estimators

included the samne constant modifications which were devel-

oped for sample size 20. The results of these runs, given

in column 3 of Table XII, show that the ad hoc adaptive

estimators still performed better by all three criteria than

estimator 9 or the first type of adaptive estimators for
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sample size 50. However, for sample size 100, the ad hoc

corrections seemed to become inappropriate and we see that

the performance of the ad hoc adaptive estimators became

worse than that of estimator 9 and the first type of adap-

tive estimators for each of the three criteria. These

results indicated the need to express the ad hoc corrections

as functions of the sample size in order to have appropriate

correction terms.

To determine the nature of appropriate correction

terms, several exploratory simulation runs were made where,

for sample size n, ad hoc corrections were expressed in
2terms of V/T, n, and n .For instance, a constant c 1 was

replaced by the term c//,weec /W c, and other

constants similarly expressed in terms of if'T for one run.

Analagously, c 1 was replaced by c2 /n, where c2 - 20 cl for

some other runs, and similarly for n. In addition, the

three ad hoc estimators b; , b 7, and b 9 described in Chapter

V were expressed as functions of n. For b b + (1-b 2)/l0,

the constant 10 was replaced by n/2, which gave a smaller

adjustment to b7 for larger sample sizes. Similarly, for

b b - ~(1-b 2)/10, the 10 was replaced by n/2. For b
2 * 9 *

b+ (1-b 2)/c*, the c* term in the denominator was multi-

plied by n/20, which again accomplished reduction in the

size of the adjustment term for larger sample sizes.

The best ad hoc adaptive estimator performance obser-

ved in the various runs resulted from the use of b; , b V and

bas discussed above, and the use of constant adjustments
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expressed as functions of fii. The results of these runs

are shown in column four of Table XII. We can see for9

n - 50 that the improvement in performance of the sample-

size-dependent ad hoc estimators over estimator 9 was much

larger for all three criteria than was the improvement

offered by the adaptive estimators which rely on constant

modifications. Also, for n = 100, the sample-size-dependent

ad hoc estimators performed well. They resulted in lower

values for all three criteria than either estimator 9 or the

first type of adaptive estimators.

Thus, in conclusion, we can see that the second type of

adaptive estimators, as developed, were sensitive to changes

in sample size. However, the expression of the ad hoc modi-

fications used in these estimators as appropriate functions

of the sample size did result in adaptive estimators which

performed well throughout a range of larger sample sizes.

Limitations of This Research

As is usually true of any study of narrow scope, this

study has several limitations. First, it is limited in the

sense that the AR(l) model is a simple subclass of ARIMA

models. The nature of the investigations do not allow them

to be generalized for parameter estimation for other types

of ARIMA models, per se. In addition, aspects of modeling

such as model identification and diagnostic checking for

model improvement are not considered here.
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It is assumed that the results of this study will be

applied in parameter estimation of a series which is sta-

tionary and for which the AR(l) model has been identified,

or for which information about the generating process sug-

gests fitting of an AR(l) model. In practice this might

require taking first or second differences of the raw data

to achieve stationarity. In fact, in model identification,

a series is differenced if preliminary parameter estimates

are less than but not significantly different from one, as

well as when they are greater than one. In the Monte Carlo

simulations, series were generated by a process which was

known to be stationary AR(l). However, no model identifica-

tion and no differencing were done. So for these short ser-

ies, estimates might have been greater than one and hence

constrained to one by the truncation rule, or less than one

but not significantly different from one, and still the

fitting of an AR(l) model was "forced" on the data, and

these AR(l) parameter estimates included in the accumulation

of run statistics. This involved some model misspecifica-

tion which may have, in some manner, biased the results of

the simulations. In particular, results for the larger

parameter values might be different from results which would

have been acquired by considering only those parameter esti-

mates of series for which sample statistics clearly indica-

ted stationary AR(l) series.

Another possible limitation in the appropriateness of

application of the Monte Carlo simulation results comes from
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the choice of fitting the one-parameter AR(1) model

xt = Oxt_1 + rt  (7.1)

rather than the two-parameter AR(l) model

xt = so + 81 xt-1 + 6t

which reparameterized in terms of the process mean u is

given as

(xt-) = B(xt-l-4) + 6t (7.2)

Since in the simulations the generating process used p = 0,

it seemed appropriate to fit model (7.1). However, for 8

values close to one, and short series, the sample mean may

be considerably different from zero. Gonedes and Roberts

[161 found that the fitting of model (7.1) to short series

generated by equation (7.1) using OLS estimation, resulted

in smaller bias, MSE, and MSPE (of 20 one-step predictions)

in estimating B than did the fitting of model (7.2) to the

same data, where i was also estimated from the sample data.

The question then arises as to how this reduction in bias,

MSE, and MSPE of not estimating the process mean influenced

the relative performance results of the estimators of $ con-

sidered in this dissertation, and hence, the conclusions

that are drawn. In this respect, it is unclear in applica-

tion of the adaptive estimators in the estimation of a given

series what effect the estimation of the mean of the series

might have on the performance of the adaptive estimators in

estimating 8 for the mean-adjusted series.

One other possible limitation of this study is the

choice of Burg's estimator, b7, as the first-step estimator
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in developing the adaptive estimators. As was discussed in

Chapter V, the good overall performance of estimator 9 in

the fixed parameter studies of Chapter IV would suggest it

as a good first-step estimator. However, since estimator 9

was used as a possible second-step estimator in each cell,

it is not clear whether the use of this estimator as the

first-step estimator would enhance the overall performance

of the two-step adaptive estimation procedures.

i ...... . A



CHAPTER VIIIj

APPLICABILITY OF THIS RESEARCH

AND CONCLUDING REMARKS

In this concluding chapter, three aspects of the appli-

cability of this research will be discussed. First, based

on the findings of this study, a procedure for selecting an

appropriate estimator for use in an applied estimation will

be given. Next, several examples from the literature per-

taining to parameter estimation and forecasting of AR(l)

series will be discussed in an effort to illustrate poten-

tial areas of applicability of the adaptive estimators

developed in this dissertation. Also, the results of the

application of the adaptive estimators in the actual esti-

mation and forecasting of a consumer price index series

will be shown. Of course the small average improvement in

absolute bias, MSE, and MSPE performance offered by the

adaptive estimators certainly does not guarantee that

improved performance can be observed for any one given ser-

ies. Nevertheless, this example will serve to demonstrate

the application of these estimators.

Recommendations for Applied Estimation

Based on the results of the validation runs discussed

in Chapter VI, certain recommendations for applied estima-

tion can be given. If one is faced with parameter estima-

tion of a series for which an AR(l) model has been
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specified, but for which little or no information as to the

true 8 value is available (more specifically B is assumed

uniformly distributed in (0,1) in the Bayesian sense), one

needs to first refer to Table IX. For a given criterion,

the selection of an estimator will depend on the performance

ranking shown in Table IX and the estimator means and stand-

ard errors shown in Table A-V. The selection of an estima-

tor rests on one's subjective evaluation of the tradeoff

between performance gains and computational difficulty of

the various estimators.

For example, suppose one wishes to estimate 8 and the

criterion of interest is MSE. A look at Table IX would seem

to indicate the use of estimator A2, or possibly of estima-

tors Al or 9. The middle column of Table A-V shows the MSE

values for A2, Al, and 9 to be 0.0263, 0.0333, and 0.0336

respectively, while the MSE values for OLS and MLE estimators

are 0.0391 and 0.0380 respectively. The 0.0070 difference

in performance of A2 over Al, when standard errors are of the

order 0.0005, together with the fact that the difference

between MLE and OLS is of the magnitude 0.0009, would sug-

gest the use of A2. However, if estimator A2 was thought

to be computationally difficult, then either estimator 9 or

Al could be used. Superficially it might seem that Al is a

much more cumbersome or computationally difficult estimator

to use in practice as compared to any simple standard esti-

mator, such as estimator 9 or estimator I (OLS). However,

it should be emphasized, by noting Table VI, which defines

estimator Al, that the computation of estimator Al only
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requires the computation of estimators b 3  b 7, and b9 1 each

of which requires virtually the same quantities for its

computation and thus could easily be computed each time the

use of estimator Al is considered. This allows the prac-

tical application of estimator Al to be a one-step procedure

computationally, and requires only a few additional arithme-

tic operations compared to the computation of the OLS esti-

mator. On the other hand, if the criterion of interest had

been MSPE, the information in Table IX and Table A-V sug-

gests that one might be indifferent among the choice of the

estimators A2, 9, Al, 11, 7, 3, and 1.

Suppose however, that in a practical estimation situa-

tion one has some fairly strong a priori information that the

true 8 value lies in some subinterval of the interval

(0,1). In this case, recommendations for estimator choice

rely on the information given in Table X and Table A-VI.

For example, suppose one feels that the true $ is in the

interval (.2, .6), and is interested in good MSE perform-

ance. Then Table X suggests the use of A2, Al, or 9.

Examination of Table A-VI shows estimator A2 to have smaller

MSE than Al by roughly 0.01 to 0.02 (where standard errors

are in the range 0.0003 to 0.0005) throughout the interval

(.2, .6). This represents a MSE reduction of 30% to 40%

for A2 over Al, which would strongly suggest the use of A2.

Al offers an improvement over estimator 9 of 0.002 to 0.003

for most of the range (.2, .6), and might reasonably be used

in this case if A2 were not used.
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The fixed parameter performance results summarized in

Table XI and the MSE means and standard errors given in

Table A-VII are of no practical value in the selection of an

appropriate estimator for use in an application. They are

included in this dissertation to facilitate comparison to

some previous studies which reported their performance

results only in terms of fixed 8 values.

Review of Examples

Many articles found in the economic and finance liter-

ature discuss studies which include some type of ARIMA

modeling. In a number of these studies AR(l) models were

used in describing many different types of series. In most

of these studies the validity of the conclusions that were

drawn depend on the accuracy of parameter estimation and/or

prediction. Often these studies involve short series, and

quite frequently OLS estimation was used. in many of these

cases, potential for improved performance could be offered

by the use of one of the adaptive estimators.

Several articles pertain to the modeling of stock

prices and commodity futures prices [5,8,22,35]. These

articles mainly address the question of whether these series

are random walks, or large parameter AR(l). Here parameter

estimation accuracy (mean absolute error and MSE) is of

crucial importance. Many other articles pertain to the

study of economic series such as annual or quarterly GNP,

annual velocity of money, and short term interest rates

[13,17,28,29].
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For example, Nelson illustrates the fitting of several

of these economic series in his study of the Federal Reserve

Board-MIT-Penn econometric model of the U.S. Economy

[28,29]. In this analysis he models 14 endogenous variables

of the FRB-MIT-Penn model with ARIMA models. Of these 14,

real GNP, GNP deflator-price index, and consumer goods price

index are modeled as AR(M) in their first differences. He

concludes that composite forecasts based on a combination of

the individual ARIMA forecasts and the econometric model

forecasts rely significantly on the ARIMA forecasts for 10

of the 14 variables. This suggests that the ARIMA predic-

tions do embody information available in the history of

individual series which is not utilized by the FRB-MIT-Penn

model. In this respect, good AR(l) series prediction can be

important as an alternative to certain findings of other

econometric models or at least serve as a benchmark for

their evaluation.

The accounting literature has numerous articles

[1,2,11,14,18,32,37] discussing the time series properties

and modeling of earnings, earnings-per-share, and other

income numbers. Of particular interest to us because of the

fitting of numerous AR(l) models (often based on short

series) are the articles [1], (111, and [37].

Watts and Leftwich [371 investigated whether the use of

Box-Jenkins techniques on annual earnings (available for

common) resulted in models with better predictive ability

than random walk. They investigated 32 firms in three
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industries (railroads, petroleum, and metals). They identi-

fied AR(l) models for all but one of the ten railroads, five

of the eleven petroleum firms, and two of the eleven metal

industries, based on 38 years of data. In order to investi-

gate sample size influence they also used periods of 50, 55,

and 60 years for each firm which had at least 60 years of

data. They concluded that approximately half of the pro-

cesses they modeled were significantly different from random

walk. However, the one-step-ahead predictive ability of

these fitted models seemed in most cases to be no better

than random walk or random walk with trend. Also, the large

number of model specification changes with changing sample

sizes seemed to imply structural change and/or model mis-

specification problems.

Albrecht, Lookabill, and McKeown [11 investigated both

nondeflated (earnings available to common stockholders) and

deflated (earnings available to common stockholders/stock-

holders equity of previous period) earnings for 49 firms in

three industries (foods, chemicals, steel) based on a 25

year estimation period. They fit Box-Jenkins models, and

compared to random walk and random walk with drift. For

the nondeflated data, they fit several AR(l) models for

steel firms, concluding the steel industry tended to be

autoregressive. However, the chemical industry tended to

exhibit random walk behavior and the food industry results

were mixed. Deflated earnings in all three industries were

suggestive of random walk models. In all cases the
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predictive ability of the Box-Jenkins models appeared to be

no better than that of the best of the two random walk

models.

An interesting study by Dopuch and Watts (111 dealt

exclusively with 11 steel firms. They attempted to evaluate

the significance of an accounting change (from straight-line

to accelerated depreciation) based on the evaluation of the

time series characteristics of net income. Here small sam-

ple estimation was crucial because the authors only had

approximately 30 years of data before the change and 11+

years after the change for most firms. In fitting Box-

Jenkins models to before-change series, they found that 5 of

the 11 firms could be modeled as AR(l). They then fit the

same respective model to each after-change series and esti-

mated the parameters. They found that the accounting switch

had a significant effect on the income process for 8 of the

11 firms (3 of the 5 AR(l) parameters).

Thus in each of the above studies dealing with earnings

series, we see the reliance of the conclusions that are

drawn on accurate parameter estimation and forecasting. In

most of these studies, the use of the adaptive estimators at

some points might offer a potential improvement in estima-

tion and prediction accuracy and hence in the validity of

the conclusion. drawn.

An Example: Forecasting a Consumer Price

Index Series

As an illustration of the application of the adaptive

estimators, some one-step forecasts were made using the



71

consumer price index series. The data used was acquired

from the National Bureau of Economic Research data tapes.

The particular series used consisted of monthly observations

of seasonally adjusted values of the consumer price index

for all items with 1967 as the base year.

A plot of the first 312 observations of this series,

form January 1947 through December 1972, showed the series

to be nonstationary. After first differences were taken,

preliminary model identification and diagnostic checking

indicated the differenced series to be adequately modeled as

an AR(1). Subsamples of this series of length 40 were

chosen for which sample fingerprints still indicated the

adequacy of the AR(l) model in describing the data. One

such series of length 40 was the period from September 1948

through December 1951.

To illustrate the application and performance of the

standard estimators as well as the two types of adaptive

estimators, initial parameter estimates were computed using

the first 20 terms of this series. Using these estimates,

one-step-ahead predictions were made and prediction errors

computed for each estimator. Then, the second through

twenty-first terms were used to compute parameter estimates,

and one-step forecasts made for the twenty-second term. In

this manner, terms 21 through 40 in the first-differenced

series were forecast. In computing the results that are

shown in this section, it should be noted that the sample

mean of each sample of 20 terms was subtracted from each
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term before parameter estimation and forecasting, so that in

effect, the two-parameter model was fit. However, the same

run made without adjusting for the mean, and hence, fitting

the one-parameter model resulted in larger parameter esti-

mates for all estimators on most of the 20-term samples, but

very nearly the same results for MSPE.

The results of the MSPE performance for the standard

estimators, as well as the two types of adaptive estimators,

are given in Table XIII. In this table we can see that the

ad hoc adaptive estimator A2 has the smallest MSPE, while

the first type of adaptive estimator Al has the second

smallest MSPE. Predicting terms 21 through 40 of the dif-

ferenced series allows for the forecasting of terms 22

through 41 of the original series. These twenty one-step

forecasts using the ad hoc adaptive estimator A2 are plotted

along with the actual values of the series in Figure 1. The

good forecasting performance in this example in terms of the

criterion of MSPE illustrates the potential applicability of

this estimator for this criterion.

Concluding Remarks

Through the use of Monte Carlo comparison studies, we

have given a more complete catagorization of the small sam-

ple performance of several AR(l) estimators for the criteria

of bias, mean absolute error, MSE, and MSPE than has been

given before. In addition, we have shown the development of

two types of adaptive estimators and validated the efficacy

of their performance. The approach used in the development
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Table XIII. Results from Estimation and Prediction of
Consumer Price Index Series Showing MSPE for

* Twenty One-Step Predictions. .

Estimator MSPE

1 0.18788

2 0.18857

3 0.21579

4 0.20733

5 0.19230

6 0.19037

7 0.19640

*8 0.18918

9 0.18838

10 0.19250

Al 0.*18536

A2 0.18238
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of these estimators shows promise for use in additional

investigations. Possibilities for investigation include

using a different first-step estimator, studying perform-

ance based on the fitting of the two-parameter model,

including model identification in the study of generated

series, and incorporating a more thorough study of sample

size dependence. Additional areas for future research

include better characterization of the sampling distribu-

tions of the estimators compared in this study, and the

development of a procedure for obtaining confidence inter-

vals for parameter estimates.



APPENDIX

TABLES OF ESTIMATOR COMPARISON RESULTS
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Table A-I. Estimator Performance Groupings at Fixed B Values
for the Criterion of Bias.

.=.•1 4 3 2 6 11 1 7 8 10 5 9

B=.2 6 2 4 3 1 11 7 8 9 10 5

.3 2 6 4 9 3 11 1 7 8 10 5

0=.4 9 2 6 4 3 11 1 7 8 5 I0

8=.5 6 2 4 9 3 11 1 7 8 10 5

.6 6 2 4 3 9 11 1 7 8 10 5

8-.7 6 2 4 3 9 11 1 7 8 5 10

a 6 2 3 4 9 11 1 7 a 5 10

* =.9 6 2 3 4 9 11 1 7 8 5 10

B=.95 6 2 3 4 9 11 7 1 8 5 10

B=.99 6 2 3 4 9 11 7 1 8 5 10

B,.999 6 2 3 9 7 11 4 1 8 5 10
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Table A-II. Estimator Performance Groupings at Fixed 8
Values for the Criterion of Mean Absolute Error.

- .1 5 10 8 9 1 7 11 3 2 4 6

8 .2 10 5 9 8 7 11 1 3 2 4 6

8 .3 9 5 10 8 7 11 1 3 2 4 6

8 -. 4 9 10 5 8 7 11 1 3 2 4 6

B U .5 9 10 5 8 11 7 1 3 2 4 6

0 w .6 9 11 7 8 1 10 5 3 2 4 6

8- .7 9 11 7 a 1 3 5 10 2 4 6

0 M .8 9 11 7 3 1 8 4 10 5 2 6

, -. 9 9 11 3 7 6 2 4 1 8 5 10

S- .95 6 3 2 9 1. 7 4 1 8 5 10

S- .99 6 2 3 11 9 4 7 1 8 5 10

0 - .999 6 2 3 9 11 7 4 1 8 5 10
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Table A-III. Estimator Performance Groupings at Fixed B
Values for the Criterion of MSE

.=.1 10 5 8 9 7 1 11 3 2 4 6

.-. 2 5 10 9 8 7 11 1 3 2 4 6

=•3 9 5 10 8 7 1 11 3 2 4 6

.4 9 10 5 8 7 11 1 3 2 4 6

.5 9 10 5 8 7 1 11 3 2 4 6

.6 9 11 7 8 1 10 5 3 2 4 6

8-.7 9 11 7 3 1 8 5 10 2 6 4

B-.8 9 3 U 7 2 1 6 8 4 10 5

8-.9 6 9 3 2 11 7 4 1 8 5 10

8-.95 6 2 3 9 11 4 7 1 8 5 10

B-.99 6 2 3 9 11 4 7 1 8 5 10

B .999 6 2 3 9 11 7 4 1 a 5 10



80

Table A-IV. Estimator Performance Groupings at Fixed B
Values for the Criterion of MSPE.

B-.1 10 5 8 9 7 11 1 3 2 4 6

-. 2 10 5 9 7 8 1 11 3 2 4 6

B-.3 9 5 10 8 7 1 11 3 2 4 6

8-.4 9 5 10 8 7 11 1 3 2 4 6

B".5 9 10 5 8 7 11 1 3 2 4 6

B-.6 9 7 11 8 1 5 10 3 2 4 6

B-.7 9 11 7 3 1 8 5 10 2 4 6

.8 9 12 3 7 1 2 8 6 4 10 5

- .9 9 3 6 2 11 7 4 1 a 5 10

0 " .95 6 2 3 9 11 4 7 1 8 5 10

Sa .99 6 2 3 9 11 4 7 1 a 5 10

S" .999 6 2 3 9 11 7 1 4 8 5 10
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Table A-V. Empirical Means (Standard Errors) from First Type
of Validation Run Where 0 was Drawn from (0,1).

Estimator Mean Abs. MSE NSPE
Error l

1 0.1498(.0013) 0.0391(.0007) 1.0667(.0039)

2 0.1637(.0013) 0.0446(.0007) 1.0706(.0038)

3 0.1532(.0013) 0.0406(.0007) 1.0649(.0038)

4 0.1676(.0014) 0.0484(.0008) 1.0783(.0040)

5 0.1513(.0013) 0.0391(.0006) 1.0830(.0044)

6 0.1686(.0014) 0.0486(.0008) 1.0766(.0039)

7 0.1468(.0013) 0.0381(.0006) 1.0647(.0039)

8 0.1484(.0013) 0.0384(.0006) 1.0696(.0040)

9 0.1389(.0012) 0.0336(.0006) 1.0561(.0037)

10 0.1513(.0013) 0.0391(.0006) 1.0837(.0044)

11 0.1461(.0013) 0.0380(.0007) 1.0628(.0039)

Al 0.1384(.0012) 0.0333(.0006) 1.0563(.0037)

A2 0.1258(.0010) 0.0263(.0004) 1.0477(.0036)
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